Experiments
Experiment 1

Experiment 1

Binary classification with VGGish model architecture. Logs and metrics have been implemented with tensorboard and pytorch.

Parameters

basic setting parameters

clip_length: 1.0 # [sec]

preprocessing parameters

sample_rate: 22050

hop_length: 512

n_fft: 1024

n_mels: 64

Training parameters

number of audio samples: 22050

learning rate: 0.001

batch size: 10

number of epochs: 10

number of samples: 60

balanced dataset: True

random clip cut: False

Classes

Labels

grime jazz

Class distribution

ClassClass IDSamples
grime030
jazz130

Results

Logs

...
Epoch: 10 [30/60 (50%)] Loss: 0.591532 Accuracy: 73.33333333333333%
Epoch: 10 [60/60 (100%)] Loss: 0.585686 Accuracy: 70.0%
[Class: grime] accuracy: 86.7 %
[Class: jazz] accuracy: 56.7 %
Epoch: [10/10] Loss: 0.588609 Accuracy: 71.66666666666667%
[[=============================================================================================]]

Metrics

Cross entropy

Accuracy

Loss/Accuracy per batch

Accuracy per class

Conv4 Layer

Linear layer

Confusion Matrix