Experiment 3
Binary classification with validation set implementation.
Parameters
basic setting parameters
clip_length: 5.0 # [sec]
preprocessing parameters
sample_rate: 44100
hop_length: 512
n_fft: 1024
n_mels: 64
Training parameters
number of audio samples: 220500
learning rate: 0.001
batch size: 30
number of epochs: 20
number of samples: 72
balanced dataset: False
random clip cut: False
Classes
Labels
grime
jazz
Class distribution
Dataset | Class | Class ID | Samples |
---|---|---|---|
Train | grime jazz | [0, 1] | 60 |
Validation | grime jazz | [0, 1] | 12 |
Metrics
Logs
Train Epoch: 20 [60/60 (100%)] Loss: 0.353381 Accuracy: 80.0%
[Class: grime] accuracy: 80.0 %
[Class: jazz ] accuracy: 83.3 %
{'grime': 24, 'jazz': 25}
{'grime': 30, 'jazz': 30}
Training for Epoch: [20/20] Loss: 0.392063 Accuracy: 81.66666666666667%
[[=============================================================================================]]
Valid batch: 20 [6/12 (50%)] Loss: 1.069889 Accuracy: 83.33333333333334%
Valid batch: 20 [12/12 (100%)] Loss: 0.136948 Accuracy: 100.0%
Validation for Epoch: [20/20] Loss: 0.603418 Accuracy: 91.7%
[[=============================================================================================]]
{'grime': 5, 'jazz': 6}
{'grime': 6, 'jazz': 6}
[[Validation]] Accuracy for class: grime is 83.3 %
[[Validation]] Accuracy for class: jazz is 100.0 %
LR: [0.001]
TRAINING LOSS: 0.39206255972385406
VALIDATION LOSS: 0.6034181341528893
Saving checkpoint: /Users/inhalt/Documents/Gendy/apps/MLVibeCaption/mlvcaudio/models/outputs/checkpoint-epoch20.pth ...
Training is done!
Model trained and stored!
Cross entropy
Training/Validation
Validation loss is lower than training set. Must redistribute train and validation sets. link (opens in a new tab)