Experiments
Experiment 2

Experiment 2

Binary classification with VGGish model architecture. Logs and metrics have been implemented with tensorboard and pytorch.

Parameters

basic setting parameters

clip_length: 1.0 # [sec]

preprocessing parameters

sample_rate: 22050

hop_length: 512

n_fft: 1024

n_mels: 64

Training parameters

number of audio samples: 22050

learning rate: 0.001

batch size: 20

number of epochs: 30

number of samples: 60

balanced dataset: True

random clip cut: False

Classes

Labels

grime jazz

Class distribution

ClassClass IDSamples
grime030
jazz130

Results

Logs

...
Epoch: [30/30] started...
Num samples: 22050
Epoch: 30 [30/60 (50%)] Loss: 0.407079 Accuracy: 90.0%
Epoch: 30 [60/60 (100%)] Loss: 0.719881 Accuracy: 56.666666666666664%
[Class: grime] accuracy: 76.7 %
[Class: jazz ] accuracy: 70.0 %
Epoch: [30/30] Loss: 0.563480 Accuracy: 73.33333333333333%
[[=============================================================================================]]
Training is done!

Metrics

Cross entropy

Accuracy

Loss/Accuracy per batch

Accuracy per class

Conv4 Layer


Conv4 parameters

        self.conv4 = nn.Sequential(
            nn.Conv2d(
                in_channels=64,
                out_channels=128,
                kernel_size=3,
                stride=1,
                padding=2
            ),
            nn.ReLU(),
            nn.MaxPool2d(kernel_size=2)
        )

Linear layer

Confusion Matrix